η , ρ , solution surface tension, viscosity, and density; Θ , limiting wetting angle; r, mean pore radius; g, acceleration of gravity; α , inclination of wick to horizontal.

LITERATURE CITED

- 1. V. I. Novikova, Geliotekhnika, No. 2, 44-48 (1984).
- 2. P. A. Novikov, V. I. Novikova, and É. K. Snezhko, Vests. Akad. Nauk BSSR, Ser. Fiz.-Energ. Navuk, No. 2, 90-96 (1985).
- 3. R. Collins, Liquid Flow through Porous Materials [Russian translation], Moscow (1964).
- 4. G. A. Aksel'rud and M. A. Al'tshuler, Introduction to Capillary-Chemical Technology [in Russian], Moscow (1983).
- 5. G. W. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, Longman (1973).

A COMPARISON OF METHODS OF COMBINING FORCE PARAMETERS

A. N. Berezhnoi and V. N. Shekurov

UDC 533.15

A study is made of two models for the molecular-interaction potential in calculating diffusion coefficients for binary vapor-gas systems.

One needs information on diffusion coefficients (DC) for binary vapor-gas systems for calculations on chemical engineering processes [1], so one needs methods of forecasting DC. The kinetic theory of gases gives DC from the following equation [2-4]:

$$D_{t} = \frac{1,883\,(10)^{-24}}{p\sigma_{12}^{2}\Omega_{D}}\sqrt{T^{3}\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)},\tag{1}$$

where the combination relations used are [2-9]:

$$\sigma_{12} = (\sigma_1 + \sigma_2)/2, \ \varepsilon_{12} = (\varepsilon_1 \varepsilon_2)^{1/2} ;$$
(2)

$$\sigma_{12} = (\sigma_1 + \sigma_2)/2, \ \varepsilon_{12} = (\varepsilon_1 \sigma_1^6 \varepsilon_2 \sigma_2^6)^{1/2} / \sigma_{12}^6 ;$$
(3)

$$\sigma_{12} = (\sigma_1 + \sigma_2)/2, \quad \varepsilon_{12} = 2\varepsilon_1 \varepsilon_2/(\varepsilon_1 + \varepsilon_2); \tag{4}$$

$$\sigma_{12} = (\sigma_1 + \sigma_2)/2, \ \varepsilon_{12}\sigma_{12}^{12} = \frac{\varepsilon_1\sigma_1^{12}}{2^{13}} \left[1 + \left(\frac{\varepsilon_2\sigma_2^{12}}{\varepsilon_1\sigma_1^{12}}\right)^{1/13} \right]^{13}; \ (5)$$

$$\sigma_{12}^{6}\varepsilon_{12} = (\varepsilon_{1}\sigma_{1}^{6}\varepsilon_{2}\sigma_{2}^{6})^{1/2}, \ \varepsilon_{12}\sigma_{12}^{12} = \frac{\varepsilon_{1}\sigma_{1}^{12}}{2^{13}} \left[1 + \left(\frac{\varepsilon_{2}\sigma_{2}^{12}}{\varepsilon_{1}\sigma_{1}^{12}}\right)^{1/13}\right]^{13}.$$
(6)

We have calculated DC for two molecular interaction potentials: the 6-12 Lennard-Jones one and the Kessel'man effective potential [7]. The collision integral Ω_D is defined by [3]

$$\Omega_D = \frac{A}{\left(T^*\right)^B} + \frac{C}{\exp ET^*} + \frac{G}{\exp FT^*} + \frac{L}{\exp HT^*} , \qquad (7)$$

where $T^* = kT/\epsilon_i$; A = 1.06036; B = 0.15610; C = 0.19300; E = 0.47635; G = 1.03587; F = 1.52996; L = 1.76474; H = 3.89411. The values of σ_i and ϵ_i for pure substances were taken from the literature for the first model (Table 1), while for the second they were determined graphically from [7]. Figure 1 shows the results. The deviations are given by

Kirov Kazan Chemical Engineering Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 52, No. 2, pp. 276-281, February, 1987. Original article submitted December 10, 1985.

<u> </u>	Force	constan	ts		Force constants			
Substance	σ _i ·1010, m	$\epsilon_i/\hbar, K$	source	Substance	σ _i .1010, m	ε _i /h, K	source	
Argon Helium Carbon dioxide Pentane Hexane Heptane	3,418 2,556 3,897 5,769 5,909 8,88	124,0 10,22 213,0 345,0 413,0 282,0	[4] [4] [4] [4] [4] [4]	Octane Nonane Benzene Methanol 1-Propanol Acetone	7,451 8,448 5,270 3,626 4,549 4,600	320,0 240,0 440,0 481,8 576,7 560,2	[4] [4] [3] [3] [3]	

TABLE 1. Parameters in the 6-12 Lennard-Jones Potentials Calculated from Viscosities

*Parameters calculated from the second virial coefficients.

TABLE 2. Comparison of Combination Methods

	Mean and maximal deviations [†] on using combination rules (2)-(6)												
Diffusion g as	6-12 Lennard-Jones potential						Kessel'man effective po- tential						
	No. of sys- tems*	(2)	(3)	(4)	(5)	(6)	No. of sys- tems*	(2)	(3)	(4)	(5)	(6)	
Carbon dioxide	7	11 37	7 10	8 23	10 22	4 13	7	8 12	5 8	5 11	10 14	5 7	
Argon	7	8 20	5 7	8 18	15 22	5 14	6	5 9	6 13	10 24	10 14	7 13	
Helium	• 7	13 39	20 50	35 70	8 22	10 27	9	30 42	34 56	65 85	9 23	12 29	

*Corresponds to Fig. 1.

The upper number is the mean deviation and the lower is the maximal one of the calculated values from the measurements given in the published sources quoted in the text.

$$\Delta_j = \frac{D_j - D_{tj}}{D_j} \cdot 100, \ \overline{\Delta} = \frac{1}{n} \sum_{i=1}^n |\Delta_j|.$$
(8)

For comparison, we used data on the diffusion of the following in carbon dioxide: pentane [11, 15], hexane [11], heptane [11], octane [11], nonane [11], benzene [11, 12, 15-17], toluene [11]; we also used values for diffusion in argon of: pentane [11, 18-20], hexane [11, 19-22], heptane [11, 20, 23], octane [11, 20, 21, 23], nonane [11], benzene [11, 16], toluene [11, 14, 16], and acetone [11, 16]; for diffusion in helium of: pentane [13, 18, 19], hexane [13, 19, 24], heptane [13, 24], octane [11, 13], benzene [13, 16, 19, 26], toluene [11], methanol [10, 26], 1-propanol [11, 26], and 2-propanol [12, 25, 26].

Table 2 gives the maximal and mean errors in calculation from (1) for each combination relation for all the substances diffusing in the individual gases. The mean errors have been calculated without allowance for the calculated DC for heptane in the gases with $\sigma_i = 8.8 \times 10^{-10}$ m and $\varepsilon_i/k = 282.0$ °K [4], since the markedly different results indicate that these values derived from the second virial coefficients are not suitable for forecasting the DC.

The open symbols in Fig. 1 denote the mean deviations, and the filled ones show the maximal ones, where we have used combinational rules (2)-(6). All the deviations are given in absolute magnitude. The symbols denote the following: minus all the calculated DC are overestimates; plus underestimates; plus-minus all deviations fluctuate about the mean value. Large discrepancies between the mean and maximal values show that (1) does not reflect the temperature dependence of the DC at atmospheric pressure with the corresponding parameters for the pure substances and the combinational rules.

1	(2)	(3)	(4)	(5)	(6) -			(2)	(3)	(4)	(5)	(5)
I	1 • • • (+) 2 • • (+) 3 • • • (+) 4 • • • (+) 5 • • (+) 6 • • • • • • 7 • • • • •	(39 (+) (39 (+) (39 (+) (39 (+) (39 (+) (39 (+) (39 (+) (39 (+) (39 (-)	C9(+) C9(+) C9(+) C9(+) C9(+) C9(+) C9(-)	()(+) ()(+) ()(+) ()(+) ()(+) ()(+) ()(+) ()(+) ()(+) ()(+) ()(+)	(C) (+) (C) (±) (C) (±) (C) (±) (C) (+) (C) (+) (C) (-)	Ι	12346107	- C9 (+) - C9 (+) - C9 (+) - C9 (+) - C9 (+) - C9 (+) - C9 (-)	CB (+) CB (+) CB (±) CB (-) CB (+) CB (+) CB (+) CB (-)	CB (+) (B (+) (C (+) (C (+) (C (+) (C (+) (C (+) (C (-)	C⊕ (+) C⊕ (+) C⊕ (+) C⊕ (+) C⊕ (+) C⊕ (+) C⊕ (-)	C ● (+) C ● (+) C ● (-) C ● (-) C ● (+) C ● (+) C ● (-)
11	f - CB (+) 2 CD (+) 3 - CB (+) 4 - CD (+) 5 - CD (+) 6 - CD (+) 9 - CD (+)	(3) (-) (3) (-) (3) (+) (3) (+) (3) (+) (3) (+) (3) (+)	())))())) ()))()) ())())())())())())())(C (+) C (+) C (+) C (+) C (+) C (+) C (+) C (+) C (+)	() (±) () (-) () (±) () (±) () (±) () (±) () (±) () (±)	11	1 2 3 4 6 10	- ○● (+) - ○● (+) - ○● (+) - ○● (+) - ○● (+) - ○● (-) - 10 20	(3€ (±) (3€ (-) (3€ (-) (3€ (-) (5€ (-) (5€ (-) (5€ (-) (10) 20) (0)	$\begin{array}{c} \bullet \bullet (-) \\ \bullet ($	0 •(+) 0 •(+) 0 •(+) 0 •(+) 0 •(+) 0 •(+) 0 10 20	O(a) (±) O(a) (-) O(a) (-) O(a) (±) O(a) (-) D 0 0 0
111	$ \begin{array}{c} f & \bigcirc \bullet(-) \\ 2 & \bigcirc \bullet(-) \\ 3 & \bigcirc \bullet(+) \\ 4 & \bigcirc \bullet(-) \\ 6 & \bigcirc \bullet(-) \\ 7 & \bigcirc \bullet(-) \\ 8 & \bigcirc \bullet(-) \\ 0 & 20 & 40 \end{array} $	$\begin{array}{c} 0 & (-) \\$	()(-) ()()(-) ()(-) ()(-) ()(-) ()(-) ()(-) ()(-) ()(-)()(-)()(-)()(-)()(-)()()(-)()()(-)()()(-)()()()()(-)(() (±) () (±) () (+) () (+) () (+) () (±) () (±) () (±) () (±) () (20 40	$ \begin{array}{c} (2) (2) \\ (2) (2) $	111	1 2 3 4 6 10 7 11 8	○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-) ○ (-)	(⊕ (-) (⊕ (-)) (⊕ (-))) (⊕ (-)) (⊕ (-))) (⊕ (-)))) (⊕ (-)))) (⊕ (-)))) (⊕ (-)))) (⊕ (-)))))((⊕ (-)))))((⊕ (-)))))((⊕ (-)))))((⊕ (-)))))((⊕ (-))))((⊕ (-)))))((⊕ (-))))((⊕ (-)))))((⊕ (-)))))((⊕ (-)))))((⊕ (-))))((⊕ (-)))))((⊕ (-)))))((⊕ (-)))))((⊕ (-)))))((⊕ (-))))((⊕ (-)))))((⊕ (-))))((⊕ (-)))))((⊕ (-))))((⊕ (-))))((⊕ (-))))((⊕ (-))))((⊕ (-))))((⊕ (-))))((⊕ (-)))))((⊕ (-))))((⊕ (-))))((⊕ (-))))((⊕ (-)))))((⊕ (-)))))((⊕ (-	Co (-) O (-)	$\bigcirc (1)$ $\bigcirc (-)$ $\bigcirc (1)$ $\bigcirc (-)$ $\bigcirc (1)$ $\bigcirc (-)$ $\bigcirc (-)$ $\bigcirc (-)$ $\bigcirc (-)$ $\bigcirc (-)$ $\bigcirc (-)$ $\bigcirc (-)$ $\bigcirc (-)$	$\begin{array}{c} \bigcirc \bigcirc (t) \\ \bigcirc \bigcirc (-) \\ (-) \\ \bigcirc (-) \\ \bigcirc (-) \\ ($

Fig. 1. Deviations in % of the observed diffusion coefficients for vapors of liquids in gases (carbon dioxide I, argon II, and helium III) from the results calculated from the kinetic-theory equation by different methods of combining the force parameters: a) 6-12 Lennard-Jones potential; b) Kessel'man effective potential (1, pentane; 2, hexane; 3, heptane; 4, octane; 5, nonane; 6, benzene; 7, 1-propanol; 8, methanol; 9, acetone; 10, toluene; 11, 2-propanol).

Table 2 and Fig. 1 indicate that: 1) one cannot give preference to any of these molecularinteraction potential models, 2) when one calculates DC for vapors in carbon dioxide, one can use the Kessel'man effective potential and combinational rules (6), while for argon one can use the 6-12 Lennard-Jones potential with (3) with σ_i and ε_i/k calculated from the viscosity, and 3) the largest deviations occur in systems containing helium. As the 6-12 Lennard-Jones potential enables one to select σ_{12} and ε_{12} [5, 11] such that one can fit the temperature dependence of the DC within the experimental error for binary mixtures involving either helium or carbon dioxide or argon, one assumes that these combinational rules are unsatisfactory. It is necessary to define new and better combinational rules for the parameters of the 6-12 Lennard-Jones potential.

NOTATION

D, Dt, experimental and calculated diffusion coefficients, m²/sec; T, temperature, °K; M₁, M₂, molecular masses of components 1 and 2, respectively; p, absolute pressure, hPa; σ_{12} , ε_{12}/k , parameters in the interaction potential for unlike molecules, m and K respectively; k, Boltzmann's constant, J/K; $\Omega_D = f(kT/\varepsilon_{12})$, reduced collision integral; Δ , deviation, %, and $\overline{\Delta}$, mean deviation, %, in (8); n, number of measured values for diffusion coefficient; j, current values of diffusion coefficient and deviation (j = 1, 2, ..., n); σ_i , ε_i/k , parameters of interaction potential for like molecules, m and K respectively (i = 1 for vapors, i = 2 for gases).

LITERATURE CITED

- A. G. Kasatkin, Basic Processes and Apparatus in Chemical Engineering [in Russian], Moscow (1971).
- 2. J. Ferziger and H. Caper, The Mathematical Theory of Transport Processes in Gases [Russian translation], Moscow (1976).
- 3. R. Reed, J. Prausnitz, and T. Sherwood, The Properties of Gases and Liquids, 3rd revised edition [Russian translation], Leningrad (1982).
- 4. J. Hirschfelder, C. Curtiss, and R. Bird, The Molecular Theory of Gases and Liquids [Russian translation], Moscow (1961).

- L. A. Pozhar and V. N. Shchelkunov, Inzh.-Fiz. Zh., 46, No. 1, 44-50 (1984). 5.
- R. M. Sevast'yanov and N. A. Zykov, Teplofiz. Vys. Temp., 9, No. 1, 46-51 (1971). 6.
- P. M. Kessel'man, V. R. Kamenetskii, and E. S. Yakub, The Transport Parameters of Real 7. Gases [in Russian], Kiev (1976).
- 8. C. Y. Ng, Y. T. Lee, and J. A. Barker, J. Chem. Phys., <u>61</u>, No. 5, 1996-2003 (1974).
- P. D. Neufeld and R. A. Aziz, J. Chem. Phys., 59, No. 5, 2234-2243 (1973). 9.
- 10. V. N. Shekurov and A. N. Berezhnoi, Intercollegiate Collection: Heat and Mass Transfer in Chemical Engineering [in Russian], Kazan (1983), pp. 13-15.
- 11.
- A. N. Berezhnoi and V. N. Shekurov, Inzh.-Fiz. Zh., 49, No. 2, 266-270 (1985).
 A. N. Berezhnoi and V. N. Shekurov, Zh. Tekh. Fiz., 53, No. 11, 2214-2223 (1983). 12.
- V. N. Shekurov and A. N. Berezhnoi, Heat and Mass Transfer in Chemical Engineering: 13. Intercollegiate Collection [in Russian], Kazan (1984), pp. 35-38.
- V. N. Shekurov, A. V. Semenov, and A. N. Berezhnoi, Zh. Fiz. Khim., 58, No. 6, 1535-14. 1537 (1984).
- A. V. Semenov, "An experimental study of diffusion in compressed binary vapor-gas mix-15. tures," Ph. D. Thesis, Kazan (1982).
- L. N. Kurlapov and S. N. Chernyak, Thermophysical Parameters of Substances and Materials 16. [in Russian], Issue 17, Moscow (1982), pp. 75-80.
- 17. A. Winkelmann, Ann. Phys. Chem., 23, No. 10, 203-227 (1884).
- 18. Nagasaka Minoru, J. Chem. Eng. Data, 18, No. 4, 388-390 (1973).
- C. L. Hargrowe and D. T. Sawyer, Analyt. Chem., 39, No. 2, 244-246 (1967). 19.
- 20. V. I. Semkin and M. S. Vigdergauz, Proceedings of the Conference at the Arbuzov Institute of General and Physical Chemistry, Academy of Sciences of the USSR [in Russian], Moscow (1971), pp. 155-159.
- J. A. Commungs and A. R. Ubbelohde, J. Chem. Soc., No. 7, 2524-2525 (1955). 21.
- 22. E. Grushka and P. Schnepelsky, J. Phys. Chem., 80, No. 13, 1509-1512 (1976).
- J. K. Clarke and A. R. Ubbelohde, J. Chem. Soc., No. 5, 2050-2055 (1957). 23.
- C. Vandensteendam and S. Piekarski, J. Chem. Phys. Phys.-Chim. Biol., 70, No. 4, 600-604 24. (1973).
- 25. Yu. A. Stepanov, "An experimental study of the diffusion of the vapors of alcohols in compressed gases," Doctoral Dissertation, Kazan (1973).
- 26. S. L. Seager, L. R. Geertson, and J. C. Giddings, J. Chem. Eng. Data, 8, No. 2, 168-169 (1963).